Differential effects of climate and species interactions on range limits at a hybrid zone: potential direct and indirect impacts of climate change.
نویسندگان
چکیده
The relative contributions of climate versus interspecific interactions in shaping species distributions have important implications for closely related species at contact zones. When hybridization occurs within a contact zone, these factors regulate hybrid zone location and movement. While a hybrid zone's position may depend on both climate and interactions between the hybridizing species, little is known about how these factors interact to affect hybrid zone dynamics. Here, we utilize SDM (species distribution modeling) both to characterize the factors affecting the current location of a moving North American avian hybrid zone and to predict potential direct and indirect effects of climate change on future distributions. We focus on two passerine species that hybridize where their ranges meet, the Black-capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee. Our contemporary climate models predict the occurrence of climatically suitable habitat extending beyond the hybrid zone for P. atricapillus only, suggesting that interspecific interactions primarily regulate this range boundary in P. atricapillus, while climatic factors regulate P. carolinensis. Year 2050 climate models predict a drastic northward shift in suitable habitat for P. carolinensis. Because of the greater importance of interspecific interactions for regulating the southern range limit of P. atricapillus, these climate-mediated shifts in the distribution of P. carolinensis may indirectly lead to a range retraction in P. atricapillus. Together, our results highlight the ways climate change can both directly and indirectly affect species distributions and hybrid zone location. In addition, our study lends support to the longstanding hypothesis that abiotic factors regulate species' poleward range limits, while biotic factors shape equatorial range limits.
منابع مشابه
Climate-Mediated Movement of an Avian Hybrid Zone
The interaction between sibling species that share a zone of contact is a multifaceted relationship affected by climate change [1, 2]. Between sibling species, interactions may occur at whole-organism (direct or indirect competition) or genomic (hybridization and introgression) levels [3-5]. Tracking hybrid zone movements can provide insights about influences of environmental change on species ...
متن کاملDynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians
Climate change is currently considered a serious threat for many species and recognized as one of the most important factors in the global biodiversity loss. Among animal groups, amphibians are known to be among the most sensitive groups of vertebrates to climate change due to their inability to travel long distances, and mountain habitat species are more exposed to climate change pressures tha...
متن کاملImpact of Climate Change on Fisheries and Aquaculture Activities in Southern Iraq
The impacts on aquaculture and fisheries sectors from climate change in the southern part of Iraq will likely to be both positive and negative arising from direct and indirect impacts on natural resources. The main elements of climate change that could potentially impact fisheries and aquaculture activities in Iraq are temperature, rain patterns, shortage of freshwater, circulation, upwelling, ...
متن کاملThe effects of climate change on the distribution of an invasive fish in Iran: Gambusia holbrooki (Girard, 1859)
Today, invasive species are considered as one of the major threats to biodiversity and ecosystem functions. The suitable habitats of these species are expected to be expanded under the effects of future climate change hence it is likely to threaten the existence of native species. Consequently, identifying the current and potential distribution range of invasive species is essential for managem...
متن کاملModelling potential impacts of climate change on the oak spatial distribution (Case study: Ilam and Lorestan provinces)
Examining the effects of climate change on the oak spatial distribution, as the main species of Zagros forests and its ecological and economic values is of significant importance. Here, we used species distribution models for simulating current climatic suitability of oak and its potential changes in 2050 and 2070. For this purpose, five regression-based and machine learning approaches, four cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology and evolution
دوره 5 21 شماره
صفحات -
تاریخ انتشار 2015